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Abstract

Visual Question Answering (VQA) has emerged as a highly en-
gaging field in recent years, with increasing research focused on
enhancing VQA accuracy through advanced models such as Trans-
formers. Despite this growing interest, limited work has examined
the comparative effectiveness of textual encoders in VQA, particu-
larly considering model complexity and computational efficiency.
In this work, we conduct a comprehensive comparison between
complex textual models that leverage long-range dependencies and
simpler models focusing on local textual features within a well-
established VQA framework. Our findings reveal that employing
complex textual encoders is not always the optimal approach for
the VQA-v2 dataset. Motivated by this insight, we propose Con-
vGRU, a model that incorporates convolutional layers to improve
text feature representation without substantially increasing model
complexity. Tested on the VQA-v2 dataset, ConvGRU demonstrates
a modest yet consistent improvement over baselines for question
types such as Number and Count, which highlights the potential
of lightweight architectures for VQA tasks, especially when com-
putational resources are limited.
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1 Introduction

Visual Question Answering (VQA) [1] has emerged as an increas-
ingly interesting area of research at the intersection of computer
vision and natural language processing. The objective of VQA is to
answer questions about a given image, requiring models capable of
understanding both visual and textual modalities. One particular
task in the VQA domain that attracts additional attention is the
counting task. This specific task requires the model to quantita-
tively identify the number of objects in a given image. Despite
its apparent simplicity, this task demands precise identification,
localization, and counting of objects, and avoiding potential pitfalls
like multiple counting or not acknowledging occluded items.

Advanced sequential models, such as Transformers, have seen
great success in various tasks and have been widely adopted. How-
ever, these models are not always the best choice for every task,
particularly in scenarios where balancing model performance with
computational cost is essential. As highlighted in previous stud-
ies that evaluate models under specific conditions [2], carefully
considering model selection and exploring simple yet effective im-
provements is also crucial for optimizing task performance.

In this paper, we pose the question: Are complex sequential mod-
els always the most suitable approach for handling textual modality
in VQA tasks? To investigate this problem, we conduct comprehen-
sive experiments applying both complex models like Transformer
Encoder and attention-based models, as well as simpler structures
such as RNNs and CNNs on a well-established VQA-v2 dataset. We
focus our analysis on different text feature extraction methods and
their impact on model accuracy. We discover that simpler models,
specifically those good at capturing local interdependencies within
the text, can provide improvements over some complex models.
Furthermore, the incorporation of convolutional layers into simpler
structures like Gated Recurrent Units (GRU), forming what we term
as ConvGRU, proves quite feasible.

Our main contributions are threefold: (1) We present ConvGRU,
a GRU-based text encoder enhanced by applying convolutional lay-
ers. Experimental results demonstrate that leveraging local textual
features with ConvGRU can marginally improve VQA accuracy
without increasing computational costs. (2) We conduct an ex-
tensive comparison of various VQA text encoders, and find that
complex models such as Transformer Encoders may underperform
compared to simpler architectures better at extracting local textual
features.

2 RELATED WORK

Visual Question Answering. Visual Question Answering (VQA)
has rapidly evolved since [1] first introduced the concept of free-
form and open-ended VQA tasks, accompanied by a benchmark
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dataset and evaluation metrics. [3] introduces complementary
image-question pairs to mitigate the imbalance caused by language
priors. Early VQA research primarily utilized Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) for image
and question encoding, respectively [1] [4] [5] [6]. [4] exemplifies
this approach through a two-branch neural network combining a
CNN-based image encoder with an LSTM question encoder. The
emergence of Transformer models has then catalyzed the develop-
ment of cross-modal architectures in the VQA domain. Notably,
models like ViLBERT [7], VisualBERT [8], and CLIP [9] have led
the transition towards unified frameworks. These models have
been instrumental in recent VQA research efforts [10] [11] [12]
[13], showcasing remarkable results on VQA tasks.

Spatial Attention in VQA. Spatial attention mechanism is
adopted in order to improve the performance of VQA and mimic
human behavior, i.e., looking at certain parts of the regions [14] [15]
[16]. Stacked attention networks (SAN) [14] and Spatial Memory
Network (SMem) [15] similarly utilize two-stage attention frame-
work to produce better glimpses through multiple reasoning. To
generate a query-aware context representation without early sum-
marization, [16] proposes a multi-stage hierarchical bi-directional
attention network.

Text Representations in VQA. The task of Visual Question
Answering (VQA) necessitates effective textual representation to
comprehend questions that guide the visual understanding. Tradi-
tional approaches have predominantly employed Recurrent Neural
Networks (RNNs), including Gated Recurrent Units (GRU) and
Long Short-Term Memory (LSTM) networks [1] [4] [17]. Their
ability to model the temporal dependencies inherent in natural
language questions makes them robust baselines for text repre-
sentation in VQA tasks. Beyond RNNs, the Text Convolutional
Neural Network (TextCNN) [18] emerges as an alternative that
leverages convolutions to extract local features, offering a different
perspective on capturing text semantics [5]. The breakthrough of
the Transformer [19] has introduced a shift towards attention-based
methods for textual representation. The Transformer Encoder, with
its self-attention mechanism, allows for the direct modeling of re-
lationships between all words in a question, irrespective of their
positional distances. Building on the success of Transformers, BERT
(Bidirectional Encoder Representations from Transformers) [20]
has emerged as another milestone in text representation adept at
grasping the nuanced context of words in a sentence from both
directions. This progression has culminated in Transformers and
BERT becoming the dominant models in recent VQA works [10]

[21].

3 Methodology

3.1 Problem Formulation

The primary objective of Visual Question Answering (VQA) is to
accurately predict an answer given an image and a corresponding
natural-language question. Therefore, the VQA task can be regarded
as a classification problem, and its goal is to identify the most
probable answer d from a predefined set of possible answers, based
on the provided image i and a question g. Formally, this is expressed
as:

d = argmaxP(ali,q) (1)

a
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where a denotes a potential answer within the set A =
{a1, az, as, ..., an}, with n indicating the total number of possible
answers. In scenarios involving counting tasks within VQA, d signi-
fies the number that most accurately responds to the posed question
concerning the image.

3.2 Method Overview

Our methodology seeks to improve VQA accuracies by focusing
on enhanced text processing techniques, leveraging the founda-
tional work of [22]. We introduce a model that primarily innovates
in textual feature extraction through a novel Convolutional GRU
framework, and also integrate existing methods for image feature
extraction and a counting component to address both visual data
and numerical queries effectively.

At the heart of our proposed model, as depicted in Figure 1, is
the integration of a Convolutional GRU framework for improved
extraction of textual features from questions. For image modality,
we employ a pre-trained R-CNN model for extracting features,
accompanied by a stacked attention mechanism and a counting
module from the base model.

3.3 Standard Models

We directly adopt several established methods to highlight our
contributions in the textual modality and give a fair comparison of
different textual encoders under the same setting.

3.3.1 Image Encoder. We employ a pre-trained R-CNN model with
aResNet-101 backbone [23] for image feature extraction to leverage
its strengths of depth and computational efficiency through bottle-
neck blocks. Table 1 provides an overview of ResNet-101 structure
and the arrangement of its bottleneck blocks.

3.3.2  Stacked Attention Mechanism. We utilize the stacked atten-
tion network proposed by [14], which employs multiple layers of
attention to pinpoint relevant areas within an image iteratively.

At each step ¢, the mechanism calculates a glimpse x;, a weighted
mix of image features v and question features g, using:

x; = o (Conv ([dropout (v); Tile (dropout (q))])) (2)

Here, o represents the softmax function, applying the convolutional
operation Conv on the combined and processed features, where
dropout enhances model generalization, and Tile replicates g across
all spatial dimensions of v.

The attention map x; is then employed to calculate a focused
weighted sum of image features:

at:Z xi .ot 3)
i

where x; and v’ correspond to the i-th elements of x; and v, respec-
tively.

By applying this attention sequence iteratively, the network
refines its focus, progressively integrating pertinent image infor-
mation to inform the answer generation process.

3.3.3 Counting Module. Adopted from [22], the counting module
integrates attention weights a and bounding boxes b as input to
enable precise object counting. The process unfolds through several
key operations, streamlined for clarity:
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Figure 1: Overview of the VQA architecture highlighting the ConvGRU module. Questions are embedded and processed through
convolutional layers to capture local semantics, then integrated via a GRU unit. Image features are extracted using ResNet-101
with spatial attention focusing on key areas. The fusion module combines image and text information, and the classifier
outputs the answer. Counting, attention and classifier modules follow the configurations of [22].

Table 1: Detailed Structure of ResNet-101 Used for Image Feature Extraction. The table outlines the configuration of layers in

ResNet-101, including convolutional layers, max pooling, and the bottleneck blocks.

Layer Name Convl Pooling Conv2_x Conv3_x Conv4_x Conv5_x
1X1, 64 1X1, 128 1X1, 256 1x1, 512

Structures 7X7, 64 3%3 (3x3,64)x3  (3x3,128) x4  (3%3,256)x23 (3%3,512)%x3
1X1, 256 1x1, 512 1x1, 1024 1X1, 2048

Attention Matrix Formation: Attention weights are trans-
formed into an attention matrix A = aa’, mapping the relationship
between different object proposals.

Duplicate Removal: Intra-object duplicates are eliminated by
applying a mask created from the inverse of the Intersection over
Union (IoU) scores between bounding boxes:

Dijj =1 = IoU (b,', bj) 4)

This produces a refined attention matrix A=A © D, where ®
denotes element-wise multiplication.

Inter-Object Differentiation: Inter-object duplicates are ad-
dressed by calculating a uniqueness score for each proposal. This
involves assessing the similarity between proposals based on their
attention weights and adjusted attention matrix, A. Each proposal’s
score is inversely related to the number of similar proposals.

Count Matrix and Output: The final counting matrix C is
computed by considering the scaled attention matrix and adding
self-loops based on the uniqueness scores. The count output vector
O is derived from C, and adjusted for the degree of overlap and
distance from expected counts.

This module’s design enables the VQA model to differentiate be-
tween and accurately count overlapping objects, thereby enhancing
the model’s overall counting accuracy.

3.3.4 Fusion and Classifier Module. Following the methodology
described in [22], the fusion of features is executed as follows:

Fuseou; = ReLU (wix + way) — (wix — way)? (5)

In this equation, w; and wy are weights assigned to features x (vi-
sual) and y (textual), respectively. This method combines linear and
quadratic interactions, activated by ReLU, to merge these feature
sets effectively.

For classification, a multi-modal approach is utilized, concatenat-
ing visual and question representations, along with the counting
module’s output. This concatenated result undergoes ReLU acti-
vation and is further refined through batch normalization before
proceeding to a fully-connected layer designed for a 3000-category
classification task.

The model’s accuracy is assessed using the Negative Log-
Likelihood Loss Function, defined as:

1 N
Loss = S log P(anli, q) (6)

n=1

Here, the loss is averaged across all correct answers to compute the
final value, ensuring a comprehensive evaluation of the model’s
performance.
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Figure 2: Schematic representation of the textual modality feature extraction model. Word embeddings are processed through
dropout, Tanh activation, padding, and convolutional layers to capture multi-scale features. A residual unit is applied to ensure
even questions with subtle n-gram features retain robust initial representations. Then, features are concatenated and fed into a
GRU to extract sequential semantics. The inset details the GRU’s internal gating mechanisms.

3.4 Convolutional GRU for Text Encoding

In Visual Question Answering (VQA), textual feature extraction
traditionally utilizes Recurrent Neural Networks (RNNs) like Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) due
to their proficiency in modeling sequential data. GRUs are often
favored for their computational efficiency, especially given the con-
cise and straightforward nature of questions in VQA tasks. Our
main contribution lies in enhancing the GRU architecture by in-
corporating convolutionally extracted n-gram features as inputs
instead of direct word embeddings. This approach is theoretically
grounded in the understanding that local n-gram patterns are cru-
cial for capturing semantic meaning in text [24].

Considering the concise nature of questions, our analysis reveals
that self-attention mechanisms might lead to overfitting, which is
observed in our comparative analysis with RCNN+SA-GRU models
(Section 4.3). We propose a one-dimensional convolutional ap-
proach as a more effective alternative for feature extraction. By
employing kernels of sizes 2 and 3, we capture bi-gram and tri-gram
features, respectively, which are then processed through distinct
padding strategies-asymmetrical for bi-grams to prioritize the first
word of the sequence, and symmetrical for tri-grams to preserve
context evenly. Similar to the observations in [25] regarding the
shift problem encountered with even-numbered convolutions in
image processing, we identify a parallel issue in the realm of one-
dimensional text convolutions. To avoid the potential complexity
and overfitting that might arise from directly addressing this shift
problem, we choose to simply add a unit of padding at the beginning
of sequences to accurately identify the initial words of a question,
which are crucial for defining its category. For instance, "what”
typically signals a query about an object, while *what color” sug-
gests a question about color. The utility of this asymmetric head
padding technique is also validated by the results in Section 4.3.

Figure 2 outlines our Convolutional GRU (ConvGRU) model’s
architecture, highlighting the integration of convolutional n-gram

feature extraction with GRU processing. Given a sequence of ques-
tion words g, each word is first embedded into a high-dimensional
space, yielding the matrix E € RB*LXd and followed by a Dropout
and Tanh activation, the matrix is calculated as:

where B is the batch size, L is the sequence length, and d is the
embedding size.

M = Tanh (Dropout (E)) 7)

Convolution operations with kernels of sizes 3 and 2 are then ap-
plied to M, and their outputs are concatenated along with a residual
connection to M:

X3 = Conv3 (SymPad (M)) (8)
Xy = Conv2 (AsyHeadPad (M)) 9)
X =[X3;X2]+M (10)

where SymPad represents symmetric padding, and AsyHeadPad
represents asymmetric head-padding.

The GRU then processes the enriched feature set X, calculating
the update gate z;, reset gate r;, and the new memory cell h; at each
time step i, leading to the updated hidden state h;:

ri=o(Wy-xi+Uy - hi_1 +by) (11)
zi=0 Wy xi+Uz - hi—1 +bz) (12)
hi = Tanh (Wy, - xi + Uy - (ri © hi—1) +by) (13)
hi=(1-z) Ohi_1+zi © hi (14)

where o is the sigmoid function, © is the element-wise multiplica-
tion, Wy, Wy, Wy, Uy, Uz, U, are weight matrices, and by, b, by, are
bias vectors.

With this schema, our Convolutional GRU improves upon tra-
ditional methods by adeptly capturing and emphasizing pivotal
textual features, thus providing a robust foundation for more accu-
rate responses.
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4 Experiments

4.1 Dataset and Evaluation Metric

VQA-v2 Dataset. A notable change of Visual Question Answering
was the transition from the VQA dataset to VQA-v2 dataset in order
to address a number of biases and language priors found in the
original dataset [3]. For instance, "blue” is frequently selected as
the answer to questions beginning with "What color is ..” regard-
less of the image content, which may lead to improper correlations
between the question text and the answer. To cope with these con-
straints, VQA-v2 introduces complementary pairs, wherein there is
a “complementary” image that yields a different answer to the same
question for every question linked to an image. In our experiments,
VQA-v2 dataset is chosen as our primary focused task, and we
assess our model on validation set after training on the training set.

Evaluation metric. In the realm of VQA, accuracy is calculated
using a unique method. For each question, the model’s answer is
compared with human responses. The accuracy for a particular
answer is calculated by:

1 1
Acc = — min | - Agree (a), 1) (15)
Al aeA|a\Z:|A|—1 (

where A is the human answer set including 10 answers, and
Agree(-) is the number of human answers same with the predicted
one. An answer is considered correct if at least 3 humans give the
same answer to ensure accuracy while accounting for the possibility
of multiple correct answers to the same question.

To address language priors and answer imbalance in the dataset,
we also employ the Balanced Pairs Accuracy [26] metric. It
forms complementary pairs by asking the same question about two
different images requiring different answers. The model receives
credit only if it answers both correctly. Mathematically, Balanced
Pairs Accuracy is calculated as:

Acc = % Zi:l 1) (Acc](cl) ==1and Accl(cz) == 1) (16)

where Acc is the Balanced Pairs Accuracy, B denotes the number of

complementary pairs, Acc;c1> and Accl(cz) are the accuracies for two
images in the k-th pair, computed using Equation (15). §(+) returns
1 if both accuracies are 1, and 0 otherwise.

4.2 Experimental Settings

4.2.1 Training Details. All experiments described in this study
were conducted on a single RTX 3090 GPU with 24GB of memory.
For the purpose of maintaining consistency and fairness across all
tests, we utilized uniform parameters when evaluating a variety of
Text Feature Extraction Models (under the same random seed).
Specifically, the following settings were applied to each experiment:

Training Duration: Each model was trained for a total of 100
epochs, incorporating an early stopping mechanism to prevent
overfitting. Specifically, training would be terminated if there was
no improvement in performance observed over a span of 20 con-
secutive epochs.

Learning Rate: We initiated the training with a learning rate
of 0.001. To manage the learning rate dynamically, an exponential
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decay strategy was used, formulated as:
Iriy1 = Iri X 0.5(1/lr_half) (17)

Here, Ir; represents the learning rate at the current epoch, and Ir;j11
denotes the learning rate for the next epoch. The term Ir_half is
set to 50,000, indicating that the learning rate is halved every 50,000
epochs.

Batch Size: The batch size was consistently set to 256 for all
models.

Object Proposals: In our experiments, the maximum number
of object proposals per image was set to 100.

4.2.2 Compared Methods. Image features are computed from R-
CNN model with ResNet-101 as backbone mentioned in Section
3.3.1. Different text models are adopted, including basic one-layer
Gated Recurrent Unit (GRU), Text Convolutional Neural Network
(TextCNN), two-layer Long Short-Term Memory Network(2-Layer-
LSTM), Bidirectional GRU (BiGRU), Bidirectional LSTM (BiLSTM),
Self-Attention GRU (SA-GRU), Multi-Head Self-Attention GRU
(MHA-GRU), Transformer Encoder (TE) and Transformer Encoder
with GRU (TE-GRU). Specific settings are as follows:

One-Layer Gated Recurrent Unit (GRU): The baseline of our
experiments, which is directly based on the work of [22].

TextCNN: Similar to the work of [18] except that incorporates
a single convolutional layer with an assortment of kernel sizes,
specifically 3, 4, and 5 (referring [5]).

2-Layer-LSTM, BiGRU, BiLSTM: Extended from the One-
Layer GRU and One-layer LSTM by simply adding bidirectional
processing or an extra layer.

Self-Attention GRU (SA-GRU) and Multi-head Self-
Attention GRU (MHA-GRU): The SA-GRU incorporates a self-
attention mechanism [19] into the standard GRU architecture, while
the MHA-GRU, an extension of SA-GRU, employs a multi-head self-
attention mechanism that divides the input sequence into multiple
segments for simultaneous processing. In our experiments, the
configuration with 5 attention heads was utilized.

Transformer Encoder (TE) and Transformer Encoder GRU
(TE-GRU): Transformer Encoder (TE) directly utilizes the encoder
component of the original Transformer model proposed by [19]. In
the Transformer Encoder GRU (TE-GRU), input embeddings are
first processed through Transformer Encoder, and then fed into the
GRU layer. Similar to MHA-GRU, different heads were tested, and
the best performance was achieved when set to 4 or 5.

4.2.3 ConvGRU Settings. For our ConvGRU model (Section 3.4),
we experimented with different kernel sizes (1, 2, 3, and 4) for
convolutional layers to see how they affect text feature extraction.
Following the idea from [27], we used multiple kernel sizes to
capture text features at various scales. Instead of pooling, we chose
to concatenate features from different kernels to avoid losing too
much textual information since most input questions are quite
short. Our main focus was on multi-scale kernels, specifically
combinations of k = 2+ 3 and k = 1+ 2 + 3, to leverage multiple
text feature representations.
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Table 2: Comparison of different textual models. “SA” and “MHA” refer to Self-Attention and Multi-Head Self-Attention
respectively, and all configurations are the same except for textual encoders.

Method VQA Accuracy (%) Balanced Pair Accuracy (%)

Number Count All Number Count All
RCNN+GRU [22] 49.40 57.13 65.42 22.98 26.47 37.26
RCNN+TextCNN 47.68 55.23 64.00 21.42 24.71 35.12
RCNN+2-Layer-LSTM 48.23 55.74 64.98 22.34 25.81 36.76
RCNN+BiGRU 48.84 56.57 65.44 22.34 25.81 37.38
RCNN+BIiLSTM 48.11 55.68 65.15 21.70 25.09 36.97
RCNN+SA-GRU 46.04 53.11 64.47 18.96 21.85 35.96
RCNN+MHA-GRU 48.71 56.25 64.92 22.65 26.11 36.94
RCNN+TE 46.70 53.98 63.53 20.47 23.72 35.41
RCNN+TE-GRU 48.20 55.77 64.66 21.77 25.14 36.31

Table 3: Performance comparison of ConvGRU configurations with varying kernel sizes (denoted by numbers in parentheses)
and the residual connections (indicated by ’Res’). “Head” and “Tail” refer to asymmetric head padding and asymmetric tail

padding discussed in Section 3.4, respectively.

GRU Setting VQA Accuracy (%) Balanced Pair Accuracy (%)
Yes/No  Num-  Count Other All Yes/No  Num-  Count Other All
ber ber

GRU [22] 81.81 49.40 57.13 57.20 65.42 55.01 22.98 26.47 28.29 37.26

+ Conv(1) 81.76 49.07 56.84 57.14 65.33 54.71 22.64 26.20 28.25 37.09

+ Conv(2) 81.70 49.46 57.18 57.03 65.31 54.60 23.02 26.60 28.20 37.08

+ Conv(3) 81.80 49.22 56.86 57.21 65.40 54.93 23.00 26.54 28.40 37.29

+ Conv(4) 81.53 46.40 53.61 57.11 64.88 54.64 19.45 22.44 28.17 36.59

+ Conv(1+2+3) 81.85 49.11 56.84 57.27 65.43 54.78 22.95 26.47 28.22 37.15

+ Conv(2+3+Res,Tail) 81.70 49.26 56.96 57.20 65.36 54.68 23.11 26.69 28.26 37.15
+ Conv(3+Res) 81.88 49.36 57.12 57.19 65.44 54.93 23.43 27.03 28.10 37.21

+ Conv(2+3+Res,Head) 81.96 49.53 57.26 57.33 65.56 55.09 23.36 26.94 28.41 37.41

4.3 Results

Table 2 presents the performance of different Text Feature Extrac-
tion Models in terms of VQA Accuracy (%) and Balanced Pair Accu-
racy (%) on VQA-v2 validation set. Our experiments show that using
complex models on the text modality doesn’t always help with VQA
tasks. In fact, models with complex features like Transformer En-
coders and attention mechanisms (Self-Attention and Multi-Head
Self-Attention) perform worse than simpler ones. This suggests
that for VQA tasks, where questions are short and have similar
meanings, these complex models good at capturing long-distance
dependencies or global features might not always be necessary.
On the contrary, local text features seem to play a more pivotal
role in determining model accuracy considering the nature of ques-
tions in VQA-v2 dataset. This can be seen from the results shown in
Table 3. The convolutional layer and residual unit in ConvGRU tend
to capture extra local dependencies within the text data effectively
without losing information from initial text representations. When
comparing the ConvGRU variants with kernel sizes ranging from
1 to 4 (Conv(1) to Conv(4)), a clear pattern emerges: The Conv(1)
model, equally performing a linear projection, offers limited bene-
fits in terms of capturing the nuanced relationships between words
in a question. On the other hand, models with larger kernel sizes,

like Conv(4), demonstrate a decline in performance, suggesting
that excessively large kernels may overlook crucial local textual
features. This observation implies that kernels larger than 4 are
too broad, potentially diluting the model’s focus on the immediate
contextual relevance between adjacent words. Conversely, kernel
sizes of 2 and 3 strike a balance.

This insight led us to explore multi-scale convolution strategies,
combining the strengths of kernel sizes 2 and 3. Our experiments
confirm that this multi-scale approach, particularly with asymmet-
ric head-padding (Conv(2+3+Res,Head)), marginally outperforms
the equivalent configuration with tail-padding. The slight prefer-
ence for head-padding may be attributed to its emphasis on the
initial segments of questions, which often direct the types of ques-
tions.

Although the Conv(3+Res) shows competitive, and in some as-
pects, superior performance to Conv(2+3+Res,Head), the latter’s
broader applicability across different text scenarios, as further dis-
cussed in Section 4.6, positions it as a more versatile model. The
Conv(2+3+Res,Head) model not only capitalizes on multi-scale
convolution benefits but also enhances the interpretability and
adaptability of the model to various question types within the VQA
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Figure 3: Distribution of question lengths within the VQA-v2 dataset. Red bars represent the total number of questions at each
length, while blue bars show the number of counting questions that start with "How many’.

framework. This makes it an optimal choice for addressing the
diverse challenges presented by the VQA tasks.

Also, it needs to point out that relatively incremental improve-
ment by ConvGRU over the baseline GRU model may stem from
limitations inherent in the Image Encoder, attention mechanisms,
and the visual-textual fusion methods employed. Therefore, ad-
vancements in these areas might further unlock the potential of
ConvGRU in VQA tasks.

4.4 Unexpected Shortfalls: Why Transformer
Encoder Struggles with VQA Text

The underperformance of Transformer Encoder in Visual Question
Answering (VQA) tasks may initially appear surprising, given their
success in broader NLP applications. This discrepancy arises from
the unique textual characteristics within VQA, where questions are
typically short and semantically similar. Unlike many NLP tasks
where global contextual insights are crucial, VQA demands precise
extraction of information from concise queries.

Transformer Encoder is good at capturing relationships in exten-
sive text sequences through self-attention mechanisms. However,
VOQA tasks often involve brief textual prompts seeking specific vi-
sual details. This context significantly limits the utility of global
contextual analysis, as the essence of VQA questions lies in local-
ized cues rather than extensive narrative contexts. Furthermore,
the semantic similarity among VQA questions adds another layer

of complexity. Transformer Encoder may not effectively prioritize
the subtle distinctions critical in VQA. Thus, their architectural
advantages, while transformative for general NLP, may inadver-
tently obscure the localized, specific cues vital for accurate Visual
Question Answering.

In essence, the architectural design of Transformer Encoder,
though revolutionary for capturing global textual relationships,
aligns less effectively with the requirements of VQA tasks. This
misalignment underscores the necessity for approaches that em-
phasize local feature extraction, suggesting a tailored adaptation of
text models to better accommodate the concise and semantically
concentrated nature of VQA queries.

4.5 How Short Can VQA Questions Get?

We conduct an analysis of the length distribution of questions in the
VQA-v2 dataset to demonstrate how the convolutional extraction
of local features can lead to performance improvements.

As shown in Figure 3, we use bar chart to represent the distri-
bution, with the X-axis indicating the length of questions and the
Y-axis indicating the frequency of questions at each length. In our
comprehensive analysis of 658,111 questions from VQA-v2 dataset,
we found that a significant majority, 636,894 questions (96.78%),
have lengths ranging from 3 to 10 words. Notably, 569,437 ques-
tions (86.53%) are within the 4 to 8-word range. A steep decrease in
question frequency is observed with increasing length. Focusing on
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Figure 4: Qualitative results on validation samples indicating how GRU models enhanced with convolutional layer can predict

more accurate answers.

the "7How many” counting questions (72,012 in total), a predominant
61,516 questions (85.42%) fall within the 5 to 8-word range, with
questions exceeding 10 words represent a mere 4.1% of counting
queries.

These insights highlight the predominance of short questions
in VQA-v2 dataset, demonstrating the effectiveness of smaller con-
volution kernels for local feature extraction. The prevalence of
question-type determinants at the start of queries ("How many”, "Is
there”, ’Do”, etc.) further advocates for the superiority of compact
kernels. This observation also aligns with the performance dip
for k=4 scenarios depicted in Table 3, reinforcing smaller kernels’
utility in enhancing textual modality within VQA frameworks.

4.6 Qualitative Results

In this section, we present four distinct cases from validation set
to demonstrate the impact of different GRU configurations on pre-
diction accuracy (Figure 4). We compare the GRU, ConvGRU(3),
and ConvGRU(2+3) models across cases (a) to (d).

As shown in Case (a), the original GRU incorrectly predicts the
answer to be “blue”, likely confusing the color of the background
with that of the text. Conversely, both the ConvGRU(3) and the
ConvGRU(2+3) models accurately identify the correct answer as
“white”. This illustrates the capability of these enhanced models
to capture key phrase pairs such as “color of” and wording on”
through 2-grams, and richer context through 3-grams like "the color
of” and ”of the wording,” which effectively utilize the convolutional
layers to discern the finer details of the question.

In Case (b), the GRU model gives a completely wrong prediction
of “picture” as it relies solely on simplistic word-level features. The
ConvGRU(3) model improves by predicting ”sitting”—a rationally
deduced yet contextually incorrect response, revealing that 3-gram
features effectively capture a person’s state or action in a specific
location. The ConvGRU(2+3), by incorporating both 2-gram and
3-gram features, correctly comprehends the query’s intent and
the subject’s context, leading to an accurate "reading” prediction.
This case exemplifies how combining different n-grams can enrich
linguistic feature understanding and enhance alignment with image
features for more accurate predictions.

In both the counting task and the yes/no task, as shown in Case
(c) and Case (d), ConvGRU(2+3) showcases best performance. The
ability to understand relational context and specific details allows it
to correctly count ”3” boys on the field and accurately confirm the
presence of avocado on the sandwich with a yes”. These outcomes
illustrate the effectiveness of integrating multi-gram features into
GRUs.

Across all cases, the results consistently demonstrate that Con-
vGRU(2+3) achieves higher accuracy compared to ConvGRU(3)
and the original GRU. This highlights the effectiveness of integrat-
ing multi-gram features in enhancing the GRU’s comprehension
of textual information, thereby improving VQA accuracy without
significantly increasing computational costs.

5 Conclusion

This paper explored the effectiveness of complex versus simpler
models for capturing textual features in Visual Question Answering
(VQA) tasks, specifically addressing whether complex sequential
models are optimal for this purpose. Our experiments demonstrated
that the ConvGRU model, designed to capture local text features,
marginally outperformed the baseline GRU model, while advanced
models like Self-Attention and Transformer Encoders showed re-
duced effectiveness. The primary advantage of ConvGRU lies in its
ability to balance model performance with efficiency.

Nonetheless, our model is limited in scope, as it does not ad-
dress other components of the VQA framework, such as the image
encoder, where more advanced models beyond the Region-based
Convolutional Neural Networks (R-CNN) could potentially improve
results. Future research should focus on targeted improvements
within both individual components and fusion methods to further
optimize multi-modal understanding. Potential directions include
exploring advanced neural architectures tailored for visual data and
developing fusion techniques that can more effectively integrate vi-
sual and textual modalities to foster a deeper and more contextually
relevant understanding in VQA tasks.
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